skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wong, Anthony Y. H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Reductions in anthropogenic emissions have drawn increasing attention to the role of the biosphere in O3production chemistry in U.S. cities. We report the results of chemical transport model sensitivity simulations exploring the relative impacts of biogenic isoprene and soil nitrogen oxides (NOx) emissions on O3and its temporal variability. We compare scenarios with high and low anthropogenic NOx emissions representing the reductions that have occurred in recent decades. As expected, summertime O3concentrations become less sensitive to perturbations in biogenic isoprene emissions as anthropogenic NOx emissions decline. However, we demonstrate for the first time that across policy relevant O3nonattainment areas of the United States, O3becomes more sensitive to perturbations in soil NOx emissions than to identical perturbations in isoprene emissions. We show that interannual variability in soil NOx emissions may now have larger impacts on interannual O3variability than isoprene emissions in many areas where the latter would have dominated in the recent past. 
    more » « less